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STEADY MOTIONS AND INTEGRAL MAN1 FOLDS OF SYSTEMS WITH QUADRATIC INTEGRALS* 

V.I. OREKHOV 

An investigation is made of conservative systems with an additional 
integral of motion which is quadratic in the velocity. A method which 
takes into account the specific features of the mechanical problems is 
proposed to describe steady motions and integral surfaces in phase 
space. As an example, a non-holonomic problem, involving the motion of 
a rigid body carrying a gyroscope is considered. 

Topological analysis of mechanical systems with known integrals F,.... ,FI, aims at des- 
scribing the surfaces in phase space defined by fixed values of the integrals and studying 
the bifurcations of these surfaces /l/. The bifurcation points are defined by a dependence 
condition involving the integrals, ZhidFi=O(hi (where hi are Lagrange multipliers), or dFh -0, 
where FL = \‘hiFi is a pencil of integrals with constant coefficients hi. The condition dFh= 0 

is invariant /2/, i.e., it holds along the whole trajectory of the system emanating from a 
critical point of the pencil FL. The motion in this case is said to be steady. Such motions 
have been studied by numerous authors, e.g., /3-7/. In the typical case they form families 
parametrized by the values of the constants hi. 

Thus, topological analysis involves the description of steady motions. When the integrals 
(other than the entry) are linear in the velocity, both problems can be tackled by means of 
reduced potentials /l, 8/. In this paper, consideration will be given to functions which play 
an analogous role for a conservative system with an additional integral which is a quadratic 
function of the velocity. 

1. Let M be a configurational manifold with Riemannian form <.,.>. In order to include 
the non-holonomic case, our phase space will be,an m-dimensional subbundle T'M of the tangent 
bundle TM: at every point XEM the fibre T,M of this subbundle is the space of vel- 
ocities allowable by the constraints (in the holonomic case I".11 = T&1). Assume that the 
integrals are 

H (v) = v&v, v) + V (4, f’(v) = ‘/,(I’v, V> + <a, V> + W (4 

where v E T'M is the velocity vector at the point XEM, V and W are functions of the 
positional variables, F is a symmetric linear bundle operator, and a is a vector field on M. 
We may assume that I? acts from T'M to T'M and that a E T'M; otherwise we replace them 
respectively by ProI- and Pr (a), where PP is the bundle operator of orthogonal projection 
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onto T’M. 
For convenience, we shall temporarily assume that over every point x of the operator 1 

lie m distinct eigenvalues p1 (z)<...<p, (.z), and ai # 0, i = 1,...,m, where ai is the 
component of a in the direction of an eigenvector of r, rai = Piat, Xai = 8. 

Let us find the critical points of the pencil of integrals Fr: 

F,, = AH + F == If2<(r -I- hE) P, v} i- (a, v> + hlr -E W. (1.1) 

Suppose that the partial derivatives of F;'h with respect to the velocities vanish at a 
point vE T'M, i.e., (r + hE)v-!- a = 0. Vectors v satisfying this condition are called 
critical vectors for the given value of h. Over every point 2 there is a critical vector, 
which is uniquely defined if h# -pi (z); we denote it by 

V) == -(I' + Ali‘)-'a (1.2) 

There are no critical vectors over a point z for which h = -IQ(J). since ai # i?. The 
critical points of an integral FA are singled out of the set of vectors (1.2) by the con- 
dition that the differential of the function 

O-)h (5) : 1:;. (vi,) --l.‘L((I1 k h?)-‘a, a} -:- hB 2. lr (1.3) 

which is defined throughout M except at points where --Ill (J) -= A, should vanish. Consequently, 
the critical points v of the integrals H, F for a given h are defined by the condition 

v = v$" (s), diDx (.?z) = 0 (1.4) 

For every h there are steady motions through the critical points of the function @h , 

with velocity VA, 
Formally speaking, the condition dH = 0 corresponds to k: m. Instead of (l-4), we 

obtain v = 0, dY = 0, which defines equilibrium points. 
We will establish certain relations for @A and Vi". 

Proposit ion 1. For every A, tkp? function 0,. is invariant with respect to the field VA. 

Proof. In each fibre TX',!4 we apply the transformation v -+w = (r + ~.E)Y !-a. It then 
follows from (1.1) and (1.3) that 

F =I: L '? i(r + ?*F)-' W, W> -\- (I', 

Along an arbitrary trajectory, we have 

and if the initial velocity is Ye, then at ti(l we have w=at(vl) -= 0, the derivative of <I$, 
equals "h NJ,,). and so Y>< (Q,,) =: 0, as required. 

Let us consider (Dh as a function @(h, s)= @i (d, defined everywhere on R x ill except 
for the surfaces of discontinuity (ni(.r) f h = 0). It follows from (l.l)-(1.3) that 

H (vh) = lip((r + hE)-%I, a) + 1' = a@/% (1.5) 

F (vl.) = Q - hi (vh) = ct, - hawah 

2. The surfaces Ihf Z T'M corresponding to fixed values of the integrals ff ~7 h, F E f 

are the preimages of the pairs (h, f) under the integral mapping H x F: T’M-+R2. Their 
topological type is invariant to small variations of a point (h, f) E R2 in the general 
position but it changes when (h,f) passes through a bifurcation set XC R” which includes 
pairs of critical values of integrals (and is exhausted by them if all the I,,! are compact). 

In the case in hand the critical points of the integral mapping are determined by the 
critical points of the functions (Ph. By Proposition 1, for each h the latter form a set 
which is invariant under vh. In the typical case, varying A gives a smooth family of dif- 
feomorphic sets of critical points. Let b O,), f(h) be critcal values of the integrals deter- 
mined according to (1.4) by the critical points of @ h in one of these families. Then the 
curve (h(h), f(h)) parametrized by h occurs in a bifurcation set. 

Proposition 2. The following equality holds on the above-mentioned bifurcation curve: 

df,'d, --h 

Proof. In each critical set of tir choose a point I (i-) so as to obtain a smooth curve 
in M. By the definition of the quantit?es h(i).j(h: and by (l-3), hh (X) -j- / @.i 'I$, (r (A)). Dif- 
ferentiating with respect to iQ and using the fact that da&= 0 at ?' (h) , we deduce from 

(1.5) that ?.k' -;- i' (I which is equivalent to the required assertion. 
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3. We will not consider the projection n: I,, -+ M of the integral surface onto the 
configuration manifold. The mechanical meaning of the mapping n was pointed out, for example, 
by Orekhov* (*Orekhov V.I., Geometrical and topological analysis of integrals of motion in 
problems of analytical mechanics. Candidate Dissertation, Moscow Univ., Moscow, 1970) and in 
greater detail in /9/: the image n(1,J = M,,f is the domain of possible motion (DPM) for the 
given values of the integrals; the preimage s-r(x), i.e., the section r,f n T&, is the 

set of possible velocities at I. The set of critical images of n is called the generalized 
boundary of the DPM /9/; over this set the sections x-'(X) bifurcate. 

DPMs and their generalized boundaries have been described for some integrable problems 
of rigid-body dynamics with inhomogeneous quadratic integrals /9/. Our aim is to present a 
general approach to the description of DPMs MN and their generalized boundaries 6Mrtf 

in terms of the functions @'i. (r) or @ (h, 5). 
Let Q,t(h, r) = (D(h, r)- Ah be a new function in R x M. Let us consider the level 

surface S = {qJh =f} and its projection S-+ M. The sections S fl {h = const) project into 
level surfaces of the functions $. on M, which we denote by P (h); P (h) = {@h. (z) - jlh = f). 

Proposition 3. The generalized boundary 6Mhi is the set of critical images of the 

projection S--PM or, what is the same, the enveloping family of the surfaces p 6% 

Proof. A point z~M lies in 6Mhf provided that n-1 (d) contains a critical point 

of the mapping n, i.e., a critical vector vx. E I,f. Then J~(v,)==h, F(vh)=f and, by (1.51, 

&D/dh - fr = 0, CP (h, 5) - hh = f 

which proves the assertion. 
Expanding a in a series of eigenfunctions of r, we can write 

whence we see that S splits into components Sj, i = 0, 1, . . ., m, separated by the surfaces of 
discontinuity {pt (5) f h. = 0) of the function (3.1). Accordingly, in each surface p (k)C &' 
we define components 

Pj (A) = P @) n (-Fj f4 < h< -pj4 @If, j = 2, . . ., m 

p, 0") = p Q") r-l {-11x (4 xv, P,(h) = p @I n {-Pm (4 > v 

For each h, we also consider the domains 

C, (h) = {% - hk < f} f-l {-PX (x) .=c A) C M 

C, (k) = {@,, - hk > j} l-i {-pm (~1 > h) C M 

Let F, be the restriction of the integral F to the sphere {v E T,'itl :H(v) = kf over x. 
The critical values of F, are F (VA) n and by (1.5) they coincide with the critical values 
of IPh as functions of X for fixed 2. Hence it follows that as x is varied the level sets 
{Fz = f1 and (@,,, = f} bifurcate simultaneously, and thus the topological type of the set 
of possible velocities K'(X) = {Fz .= 1) is uniquely defined by the distribution of roots of 
the equation (Dh =f on the axis (hl x z. For each root there is a point over x on the 
surface Sj, as well as a curve Pjihj passing through r. Omitting the detailed proofs, we 
present the results implied by this correspondence. 

Proposition 4. The DPMs M,,f are described by the following equalities: 

M \M,, = $1 (C, 0.) U C, 0)) 

M \ Int M,,r = q (P, (V u P, (V) 

Let D, be the set of points XElW through which there is exactly one surface from 
each family P,, j = 2,..., m, and no surface from P,, P,; let lI,, i = 2,. ..,m, be the set 
of points through each of which there pass three surfaces from the family Pi, one surface 
from each of the families Pj,j = 2,..., i - 1. i -f- i,..., m, and no surface from P,,P,. 

Proposition 5. The domain MI,, \ 61M,f is the union of all the domains n I....,rn* 

Over all points of each connected component of Di the sets of possible velocities are dif- 
feomorphic to one another. 

4. We will now weaken our assumption about the eigenvalues of 1' and eigencomponents of 
a. We assume the existence in M.of surfaces 
x E {ai = 0} 

o+(x) = Pjtl(~)l and {ai (s) == 0). Over a point 
the critical vector v for h = --Pi (5) is not uniquely defined by the con- 

dition (p + hE)v + a = 0. Suppose that one of these vectors is a critical point of the 
integrals. Let us consider the steady motion starting at that point. 
intersects the set {-Pi(x) = h} 

If the trajectory 
at isolated points, then condition (1.4) will hold at all 
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other points of the trajectory, which is thus the closure of the set of critical points of 
OR. Otherwise, we obtain a motion confined to the points of a surface {-r,(z) =: h} c {ai 
0) of lower dimension; we will omit the detailed analysis of this case. 

Considering the projection R : I,, - M, we observe that its critical preimages may 
include vectors v # vi. over points .c g (&_ili --a} 7) {ai Y (I}. Proposition 3 may be refined 
as follows: 6a%f,,f is the closure of the set of critical images of the projection P -,li 

and the enveloping family of the surfaces P(h). In Proposition 4, the sets Li 1'" (9, i, I', (h) 
are replaced by their closures. In the description of the domains Di figuring in Proposition 
5, one must consider, along with pi (A) r the surfaces (pj (x) = )ljL,(z)} as well. 

5. As an example, let us consider the motion of a rigid body, fixed at its centre of 
mass, carrying a rigidly fixed gyroscope with constant angular momentum k. Suppose that the 
system is subject to a non-holonomic constraint (w, y)-- 0, where o is the anqular velocity 
and y a unit vector along a fixed axis. The problem has integrals /lo/ 

H = 'i, (Jo, o), t: = 'ia IK" - (K, y)?] 

Here J is the inertia tensor, whose principal values are denoted by J, > J, > J,, Ii =: 
IL -t k is the kinetic moment of the system. In this case 

fu=Jo-((Jo,y)y, a=k-{k,y)y, 

2%' = kZ - (k, $2, Ti G CJ 

We denote G," == (J + hE)-‘, e = 1 k Irk. 

Thanks to the symmetry of the system with respect to rotations about y, we may assume 
that W is the Poisson sphere. Let u, V be the coordinates on the Poisson sphere defined by 
the conditions p(--U) = p (-0) = 0, wherep&) = (G,y,y), taking values J1 < u <J, :< u f J,. (III 
these coordinates the problem is integrable when k = 0 Ill/). The coordinate lines point in 
the directions of the eigenfunctions of I‘, the eigenvalues are u, v. 

The points {~:a~ (7) = 0} are determined by the conditions (G_,k, y) := 0 and (G_,k,v) r 
0 and are described geometrically as the points at which the coordinate lines touch circles 
passing through &e. 

The critical vectors or and functions O,, are 

oi, = G,. WY - W, 8 = G.k, Y) GY,Y)-’ 
‘I-‘?,,. = ‘:‘J [(GA k) - (GA, Y)~(GY, VI-‘I 

(5.1) 

The critical points of Q,are ;ie and the points of the circle Lh = {(Ghk,y) = U). For 
every h# -Ji we obtain a steady motion around Li. with velocity w -= -G,.k, corresponding 
to which are the following values of the integrals: 

h (h) == I:* (JG:k,k), j (h) =~ Q',l" (G&k)? (5.2) 

When h = 0 the function Onh vanishes identically. We obtain a family of steady motions 
at the velocity w0 defined by taking 1. = 0 in (5.1). The values of the integrals are: 

It =- 1'2 [(J-'k, k) - (J-'k, Y)"(J-~~, y)-'I. f 7 0 (%i3) 

The first of these equalities determines the trajectories: a pair of curves & correspond- 
ing to the given h. The values corresponding to equilibrium, which is possible at any point 
because V 0, are: 

h 0,f :: ‘,; lk’ - (k, v)?i (5.i) 

The sets {Pi _I.- const} n {aj=O} consist of isolated points on the Poisson sphere, and 
since (0, v)=o, there exist no steady motions other than those just described. 

The bifurcation set C is shown in the figure. The segments Z,, i ~~ I... .,7, are described 
parametrically by Eqs.l5.2), with >U varying in the following intervals, respectively: (--, 
--J,h (-J,. --u,l. i--=o, -J,), (-Jz, --u,J, t--r;,, -J&), (-J,. 01, Iv, -/- co); uo, v. are the coordinates of 
the points ‘e. The segments Z,, 2, x are defined by (5.31 and (5.4), respectively. 

Let us determine the type of integral manifolds f,( for the different domains R'\ \‘. 
considering near-critical values of h, f. Suppose that a point of Z, is determined by a 
parameter value i, -= a. The corresponding criticalintegralsurface contains a steady motion 
around the circle L,. with the velocity vector oa a minimum point of the integral F on the 
sphere (w: H(co=h). The minimum value of the function @, on L, is min (D'a = uh i- !, and 
therefore all other points lie in the domain {@a - cth>l)= C, (a) and by (3.2) MJ,~= L,. If 

f is decreased we obtain C,(a)= 84, i.e., Mht = c.i,f= g. For a slight increase of f, all 
cn ih) are empty, all the non-empty C, (;i) constitute a pair of open discs, each of which 
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contains exactly one of the points +e and does not cut I.,; 
consequently, M,,f is an annulus about L,. The set of 

possible velocitiesoverthe interior points of Mhf is a 
pair of vectors near the minimum of F on the circle (B(w) L 
j/l ; over the boundary points it consists of a single vector 
- the minimum. Thus, for (II, f) E. Q, (see the figure) the 
integral manifold I,,f is a torus. 

Similar arguments show that corresponding to a point 
on Z, we have a steady motion which, on passing to Q,, 
produces another torus. When we cross X, into Q,, the 
two tori merge along the points of the steady motion to 
produce a single torus. Upon passage through Z, and 2% 
the evolution takes place in the opposite sense: the torus 
splits into two, one of which then contracts to an isolated 
trajectory of steady motion and disappears. The other 

torus contracts to a steady trajectory over Z,.If (h.1) E&. then Ihf is a pair of steady 

trajectories over the curves Lh. A slight increase in f produces a torus around each of these 
trajectories; passage through Z, into R, combines the two tori into one. Thus, the integral 
manifolds corresponding to the points of Q&J,&, are pairs of tori. For points outside !!,. P, 

they are empty. The description of the DPMs Alhf for all values of h, f involves distinguish- 
ing a large number of different cases, depending on the values of k, Ji , and is thus extremely 
complicated. 

We may conclude from the above analysis that small perturbations of the steady trajectories 
corresponding to points of Xi, i = 1, 2, 5, 6, 8, produces motions confined to tori in their 
neighbourhoods; hence these trajectories are stable with respect to some of the variables. 
Stable equilibria are obtained at the points &e if f =o; small perturbations produce DPMs 
which are small domains in the neighbourhoods of these points. 
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