- 10. RUMYANTSEV V.V., On stability of motion with respect to some of the variables. Vestnik Moskov. Gos. Univ., Ser. Mat. Mekh., Fiz., Astron., 4, 1957.
- 11. RUMYANTSEV V.V., On asymptotic stability and instability of motion with respect to some of the variables. Prikl. Mat. Mekh., 35, 1, 1971.
- 12. KARAPETYAN A.V. and RUBANOVSKII V.N., On a modification of Routh's Theorem on the stability of stationary motions of systems with known first integrals. In: Collection of Scientific and Methodological Papers in Theoretical Mechanics, 17, Vysshaya Shkola, Moscow, 1986.
- 13. KARAPETYAN A.V., Routh's Theorem and its modifications. Trudy Tbilisi Univ. Ser. Mat. Mekh., Fiz., Astron., 25, 1988.
- 14. APPELL P. Traité de Mécanique Rationelle, 1, Nauka, Moscow, 1960.

Translated by D.L.

PMM U.S.S.R., Vol.54, No.6, pp.751-755, 1990 Printed in Great Britain 0021-8928/90 \$10.00+0.00 © 1992 Pergamon Press plc

STEADY MOTIONS AND INTEGRAL MANIFOLDS OF SYSTEMS WITH QUADRATIC INTEGRALS*

V.I. OREKHOV

An investigation is made of conservative systems with an additional integral of motion which is quadratic in the velocity. A method which takes into account the specific features of the mechanical problems is proposed to describe steady motions and integral surfaces in phase space. As an example, a non-holonomic problem, involving the motion of a rigid body carrying a gyroscope is considered.

Topological analysis of mechanical systems with known integrals F_1, \ldots, F_k aims at desscribing the surfaces in phase space defined by fixed values of the integrals and studying the bifurcations of these surfaces /1/. The bifurcation points are defined by a dependence condition involving the integrals, $\Sigma \lambda_i dF_i = 0$ (λ_i (where λ_i are Lagrange multipliers), or $dF_{\lambda} = 0$, where $F_{\lambda} = \Sigma \lambda_i F_i$ is a pencil of integrals with constant coefficients λ_i . The condition $dF_{\lambda} = 0$ is invariant /2/, i.e., it holds along the whole trajectory of the system emanating from a critical point of the pencil F_{λ} . The motion in this case is said to be steady. Such motions have been studied by numerous authors, e.g., /3-7/. In the typical case they form families parametrized by the values of the constants λ_i .

Thus, topological analysis involves the description of steady motions. When the integrals (other than the entry) are linear in the velocity, both problems can be tackled by means of reduced potentials /1, 8/. In this paper, consideration will be given to functions which play an analogous role for a conservative system with an additional integral which is a quadratic function of the velocity.

1. Let M be a configurational manifold with Riemannian form $\langle \cdot, \cdot \rangle$. In order to include the non-holonomic case, our phase space will be an m-dimensional subbundle T'M of the tangent bundle TM: at every point $x \in M$ the fibre $T'_x M$ of this subbundle is the space of velocities allowable by the constraints (in the holonomic case T'M = TM). Assume that the integrals are

$$H(\mathbf{v}) = \frac{1}{2} \langle \mathbf{v}, \mathbf{v} \rangle + V(x), F(\mathbf{v}) = \frac{1}{2} \langle \Gamma \mathbf{v}, \mathbf{v} \rangle + \langle \mathbf{a}, \mathbf{v} \rangle + W(x)$$

where $\mathbf{v} \in T'M$ is the velocity vector at the point $x \in M$, V and W are functions of the positional variables, Γ is a symmetric linear bundle operator, and \mathbf{a} is a vector field on M. We may assume that Γ acts from T'M to T'M and that $\mathbf{a} \in T'M$; otherwise we replace them respectively by $Pr \circ \Gamma$ and Pr(\mathbf{a}), where Pr is the bundle operator of orthogonal projection

onto T'M.

For convenience, we shall temporarily assume that over every point x of the operator Γ lie *m* distinct eigenvalues $\mu_I(x) < ... < \mu_m(x)$, and $\mathbf{a}_i(x) \neq 0$, i = 1, ..., m, where \mathbf{a}_i is the component of \mathbf{a} in the direction of an eigenvector of Γ , $\Gamma \mathbf{a}_i = \mu_i \mathbf{a}_i$, $\Sigma \mathbf{a}_i = \mathbf{a}$. Let us find the critical points of the pencil of integrals F_{λ} :

$$F_{\lambda} = \lambda H + F = \frac{1}{\sqrt{(\Gamma + \lambda E)}} \mathbf{v}, \quad \mathbf{v} > + \langle \mathbf{a}, \mathbf{v} \rangle + \lambda V + W.$$
(1.1)

Suppose that the partial derivatives of F_{λ} with respect to the velocities vanish at a point $\mathbf{v} \in T'M$, i.e., $(\Gamma + \lambda E) \mathbf{v} + \mathbf{a} = 0$. Vectors \mathbf{v} satisfying this condition are called critical vectors for the given value of λ . Over every point x there is a critical vector, which is uniquely defined if $\lambda \neq -\mu_i(x)$; we denote it by

$$\mathbf{v}_{\lambda} = -(\mathbf{I} + \lambda E)^{-1} \mathbf{a} \tag{1.2}$$

There are no critical vectors over a point x for which $\lambda = -\mu_i(x)$, since $\mathbf{a}_i \neq 0$. The critical points of an integral F_{λ} are singled out of the set of vectors (1.2) by the condition that the differential of the function

$$\Phi_{\lambda}(x) = F_{\lambda}(\mathbf{v}_{\lambda}) = -\frac{1}{2} \langle (\Gamma + \lambda E)^{-1} \mathbf{a}, \mathbf{a} \rangle + \lambda V + W$$
(1.3)

which is defined throughout M except at points where $-\mu_i(x) = \lambda$, should vanish. Consequently, the critical points v of the integrals H, F for a given λ are defined by the condition

 $\mathbf{v} = \mathbf{v}_{\lambda} (x), \ d\Phi_{\lambda} (x) = 0 \tag{1.4}$

For every λ there are steady motions through the critical points of the function $~~\Phi_{\lambda}\,,$ with velocity $~~v_{\lambda}.$

Formally speaking, the condition dH = 0 corresponds to $\lambda = \infty$. Instead of (1.4), we obtain $\mathbf{v} = 0$, dV = 0, which defines equilibrium points.

We will establish certain relations for Φ_{λ} and \mathbf{v}_{λ} .

Proposition 1. For every λ , the function Φ_{λ} is invariant with respect to the field \mathbf{v}_{λ} .

Proof. In each fibre $T_x M$ we apply the transformation $\mathbf{v} \to \mathbf{w} = (\Gamma + \lambda E) \mathbf{v} + \mathbf{a}$. It then follows from (1.1) and (1.3) that

$$F_{\lambda} = \frac{1}{2} \langle (\Gamma + \lambda E)^{-1} \mathbf{w}, \mathbf{w} \rangle + \Phi_{\lambda}$$

Along an arbitrary trajectory, we have

$$0 = \frac{dF_{\lambda}}{dt} = \frac{1}{2} \left\langle \frac{d}{dt} \left(\Gamma + \lambda E \right)^{-1} \mathbf{w}, \mathbf{w} \right\rangle + \left\langle (\Gamma + \lambda E)^{-1} \mathbf{w}, \frac{d\mathbf{w}}{dt} \right\rangle + \frac{d\Phi_{\lambda}}{dt}$$

and if the initial velocity is \mathbf{v}_{λ} , then at t = 0 we have $\mathbf{w} = \mathbf{w} (\mathbf{v}_{\lambda}) = 0$, the derivative of Φ_{λ} equals $\mathbf{v}_{\lambda} (\Phi_{\lambda})$, and so $\mathbf{v}_{\lambda} (\Phi_{\lambda}) = 0$, as required.

Let us consider Φ_{λ} as a function $\Phi(\lambda, x) = \Phi_{\lambda}(x)$, defined everywhere on $R \times M$ except for the surfaces of discontinuity $\{\mu_i(x) + \lambda = 0\}$. It follows from (1.1)-(1.3) that

$$H(\mathbf{v}_{\lambda}) = \frac{1}{2} \langle (\Gamma + \lambda E)^{-2} \mathbf{a}, \mathbf{a} \rangle + V = \partial \Phi / \partial \lambda$$
(1.5)
$$F(\mathbf{v}_{\lambda}) = \Phi - \lambda H(\mathbf{v}_{\lambda}) = \Phi - \lambda \partial \Phi / \partial \lambda$$

2. The surfaces $I_{hf} \subset T'M$ corresponding to fixed values of the integrals H = h, F = f are the preimages of the pairs (h, f) under the integral mapping $H \times F : T'M \to R^2$. Their topological type is invariant to small variations of a point $(h, f) \in R^2$ in the general position but it changes when (h, f) passes through a bifurcation set $\Sigma \subset R^2$ which includes pairs of critical values of integrals (and is exhausted by them if all the I_{hf} are compact).

In the case in hand the critical points of the integral mapping are determined by the critical points of the functions Φ_{λ} . By Proposition 1, for each λ the latter form a set which is invariant under v_{λ} . In the typical case, varying λ gives a smooth family of diffeomorphic sets of critical points. Let $h(\lambda)$, $f(\lambda)$ be critical values of the integrals determined according to (1.4) by the critical points of Φ_{λ} in one of these families. Then the curve $(h(\lambda), f(\lambda))$ parametrized by λ occurs in a bifurcation set.

Proposition 2. The following equality holds on the above-mentioned bifurcation curve:

 $df/dh = -\lambda$

Proof. In each critical set of Φ_{λ} , choose a point $x(\lambda)$ so as to obtain a smooth curve in M. By the definition of the quantities $h(\lambda), f(\lambda)$ and by (1.3), $\lambda h(\lambda) + f(\lambda) = \Phi_{\lambda}(x(\lambda))$. Differentiating with respect to λ and using the fact that $d\Phi_{\lambda} = 0$ at $x(\lambda)$, we deduce from

(1.5) that $-\lambda h' + f' = 0$ which is equivalent to the required assertion.

752

3. We will not consider the projection $\pi: I_{hf} \to M$ of the integral surface onto the configuration manifold. The mechanical meaning of the mapping π was pointed out, for example, by Orekhov* (*Orekhov V.I., Geometrical and topological analysis of integrals of motion in problems of analytical mechanics. Candidate Dissertation, Moscow Univ., Moscow, 1970) and in greater detail in /9/: the image $\pi(I_{hf}) = M_{hf}$ is the domain of possible motion (DPM) for the given values of the integrals; the preimage $\pi^{-1}(x)$, i.e., the section $I_{hf} \cap T_xM$, is the set of possible velocities at x. The set of critical images of π is called the generalized boundary of the DPM /9/; over this set the sections $\pi^{-1}(x)$ bifurcate.

DPMs and their generalized boundaries have been described for some integrable problems of rigid-body dynamics with inhomogeneous quadratic integrals /9/. Our aim is to present a general approach to the description of DPMs M_{hf} and their generalized boundaries δM_{hf} in terms of the functions $\Phi_{\lambda}(x)$ or $\Phi(\lambda, x)$. Let $\Phi_{h}(\lambda, x) = \Phi(\lambda, x) - \lambda h$ be a new function in $R \times M$. Let us consider the level

Let $\Phi_h(\lambda, x) = \Phi(\lambda, x) - \lambda h$ be a new function in $R \times M$. Let us consider the level surface $S = \{\Phi_h = f\}$ and its projection $S \to M$. The sections $S \cap \{\lambda = \text{const}\}$ project into level surfaces of the functions Φ_{λ} on M, which we denote by $P(\lambda)$; $P(\lambda) = \{\Phi_{\lambda}(x) - \lambda h = f\}$.

Proposition 3. The generalized boundary δM_M is the set of critical images of the projection $S \to M$ or, what is the same, the enveloping family of the surfaces $P(\lambda)$.

Proof. A point $x \in M$ lies in δM_{hf} provided that $\pi^{-1}(x)$ contains a critical point of the mapping π , i.e., a critical vector $\mathbf{v}_{\lambda} \in I_{hf}$. Then $H(\mathbf{v}_{\lambda}) = h$, $F(\mathbf{v}_{\lambda}) = f$ and, by (1.5),

$$\partial \Phi / \partial \lambda - h = 0, \ \Phi (\lambda, x) - \lambda h =$$

which proves the assertion.

Expanding a in a series of eigenfunctions of Γ , we can write

$$\Phi_{h}(x,\lambda) = -\frac{1}{2} \sum_{i=1}^{m} \frac{\mathbf{a}_{i}^{2}(x)}{\mu_{i}(x) + \lambda} + \lambda \left(V(x) - h \right) + W(x)$$
(3.1)

whence we see that S splits into components S_j , j = 0, 1, ..., m, separated by the surfaces of discontinuity $\{\mu_i(x) + \lambda = 0\}$ of the function (3.1). Accordingly, in each surface $P(\lambda) \subset M$ we define components

$$P_{j}(\lambda) = P(\lambda) \mid \{-\mu_{j}(x) < \lambda < -\mu_{j-1}(x)\}, \ j = 2, \dots, m$$
$$P_{1}(\lambda) = P(\lambda) \cap \{-\mu_{1}(x) < \lambda\}, \ P_{0}(\lambda) = P(\lambda) \cap \{-\mu_{m}(x) > \lambda\}$$

For each λ , we also consider the domains

$$C_{0}(\lambda) = \{\Phi_{\lambda} - \lambda h < f\} \cap \{-\mu_{1}(x) < \lambda\} \subset M$$
$$C_{0}(\lambda) = \{\Phi_{\lambda} - \lambda h > f\} \cap \{-\mu_{m}(x) > \lambda\} \subset M$$

Let F_x be the restriction of the integral F to the sphere $\{\mathbf{v} \in T_x' \ M : H (\mathbf{v}) = h\}$ over x. The critical values of F_x are $F(\mathbf{v}_h)$, and by (1.5) they coincide with the critical values of Φ_h as functions of λ for fixed x. Hence it follows that as x is varied the level sets $\{F_x = f\}$ and $\{\Phi_h = f\}$ bifurcate simultaneously, and thus the topological type of the set of possible velocities $\pi^{-1}(x) = \{F_x = f\}$ is uniquely defined by the distribution of roots of the equation $\Phi_h = f$ on the axis $\{\lambda\} \times x$. For each root there is a point over x on the surface S_j , as well as a curve $P_f(\lambda)$ passing through x. Omitting the detailed proofs, we present the results implied by this correspondence.

Proposition 4. The DPMs M_{hf} are described by the following equalities:

$$M \searrow M_{hf} = \bigcup_{\lambda} (C_1(\lambda) \bigcup C_0(\lambda))$$
$$M \searrow \text{Int } M_{hf} = \bigcup_{\lambda} (P_1(\lambda) \bigcup P_0(\lambda))$$

Let D_1 be the set of points $x \in M$ through which there is exactly one surface from each family P_j , $j = 2, \ldots, m$, and no surface from P_1 , P_0 ; let D_i , $i = 2, \ldots, m$, be the set of points through each of which there pass three surfaces from the family P_i , one surface from each of the families P_j , $j = 2, \ldots, i - 1$, $i + 1, \ldots, m$, and no surface from P_1 , P_0 .

Proposition 5. The domain $M_{hj} \setminus \delta M_{hj}$ is the union of all the domains $D_{1,\ldots,m}$. Over all points of each connected component of D_i the sets of possible velocities are diffeomorphic to one another.

4. We will now weaken our assumption about the eigenvalues of Γ and eigencomponents of **a**. We assume the existence in *M* of surfaces $\{\mu_i(x) = \mu_{i+1}(x)\}$ and $\{\mathbf{a}_i(x) = 0\}$. Over a point $x \in \{\mathbf{a}_i = 0\}$ the critical vector **v** for $\lambda = -\mu_i(x)$ is not uniquely defined by the condition $(\Gamma + \lambda E) \mathbf{v} + \mathbf{a} = 0$. Suppose that one of these vectors is a critical point of the integrals. Let us consider the steady motion starting at that point. If the trajectory intersects the set $\{-\mu_i(x) = \lambda\}$ at isolated points, then condition (1.4) will hold at all

other points of the trajectory, which is thus the closure of the set of critical points of Φ_{λ} . Otherwise, we obtain a motion confined to the points of a surface $\{-\mu_i (x) = \lambda\} \cap \{a_i (x) = 0\}$ of lower dimension; we will omit the detailed analysis of this case.

Considering the projection $\pi: T_{ij} \to M$, we observe that its critical preimages may include vectors $\mathbf{v} \neq \mathbf{v}_{\lambda}$ over points $x \in \{-\mu_i = \lambda\} \cap \{\mathbf{a}_i = 0\}$. Proposition 3 may be refined as follows: δM_{hj} is the closure of the set of critical images of the projection S = Mand the enveloping family of the surfaces $P(\lambda)$. In Proposition 4, the sets $\bigcup P_0(\lambda), \bigcup P_1(\lambda)$ are replaced by their closures. In the description of the domains D_i figuring in Proposition 5, one must consider, along with $P_j(\lambda)$, the surfaces $\{\mu_j(x) = \mu_{j+1}(x)\}$ as well.

5. As an example, let us consider the motion of a rigid body, fixed at its centre of mass, carrying a rigidly fixed gyroscope with constant angular momentum k. Suppose that the system is subject to a non-holonomic constraint $(\omega, \gamma) = 0$, where ω is the angular velocity and γ a unit vector along a fixed axis. The problem has integrals /10/

$$H = \frac{1}{2} (J\omega, \omega), F = \frac{1}{2} [\mathbf{K}^2 - (\mathbf{K}, \gamma)^2]$$

Here J is the inertia tensor, whose principal values are denoted by $J_1 > J_2 > J_3$, K = $J\dot{\omega} + k$ is the kinetic moment of the system. In this case

$$\begin{aligned} \Gamma \boldsymbol{\omega} &= \boldsymbol{J} \boldsymbol{\omega} - (\boldsymbol{J} \boldsymbol{\omega}, \boldsymbol{\gamma}) \, \boldsymbol{\gamma}, \quad \mathbf{a} &= \mathbf{k} - (\mathbf{k}, \boldsymbol{\gamma}) \, \boldsymbol{\gamma}, \\ 2W &= \mathbf{k}^2 - (\mathbf{k}, \boldsymbol{\gamma})^2, \quad V \equiv 0 \end{aligned}$$

We denote $G_{\lambda} = (J + \lambda E)^{-1}$, $\mathbf{e} = |\mathbf{k}|^{-1}\mathbf{k}$.

Thanks to the symmetry of the system with respect to rotations about γ , we may assume that M is the Poisson sphere. Let u, v be the coordinates on the Poisson sphere defined by the conditions $\rho(-u) = \rho(-v) = 0$, where $\rho(w) = (G_w\gamma, \gamma)$, taking values $J_1 \leq u \leq J_2 \leq v \leq J_3$. (In these coordinates the problem is integrable when k = 0 /11/). The coordinate lines point in the directions of the eigenfunctions of Γ , the eigenvalues are u, v.

The points $\{\gamma : \mathbf{a}_i (\gamma) = 0\}$ are determined by the conditions $(G_{-u}\mathbf{k}, \gamma) = 0$ and $(G_{-v}\mathbf{k}, \gamma) = 0$ and $(G_{-v}\mathbf{k}, \gamma) = 0$ and $(G_{-v}\mathbf{k}, \gamma) = 0$ and are described geometrically as the points at which the coordinate lines touch circles passing through $\pm \mathbf{e}$.

The critical vectors ω_{λ} and functions Φ_{λ} are

$$\begin{aligned} \mathbf{\omega}_{\lambda} &= G_{\lambda} \left(\vartheta \mathbf{\gamma} - \mathbf{k} \right), \ \vartheta = \left(G_{\lambda} \mathbf{k} , \ \mathbf{\gamma} \right) (G_{\lambda} \mathbf{\gamma}, \mathbf{\gamma})^{-1} \\ \Phi_{\lambda} &= \frac{1}{2\lambda} \left[(G_{\lambda} \mathbf{k} , \mathbf{k}) - (G_{\lambda} \mathbf{k} , \ \mathbf{\gamma})^2 (G_{\lambda} \mathbf{\gamma} , \ \mathbf{\gamma})^{-1} \right] \end{aligned}$$
(5.1)

The critical points of Φ_{λ} are $\pm e$ and the points of the circle $L_{\lambda} = \{(G_{\lambda}\mathbf{k}, \gamma) = 0\}$. For every $\lambda \neq -J_i$ we obtain a steady motion around L_{λ} with velocity $\omega = -G_{\lambda}\mathbf{k}$, corresponding to which are the following values of the integrals:

$$h(\lambda) = \frac{1}{2} (JG_{\lambda}^{2}\mathbf{k}, \mathbf{k}), f(\lambda) = \frac{1}{2} \lambda^{2} (G_{\lambda}\mathbf{k})^{2}$$
(5.2)

When $\lambda = 0$ the function Φ_{λ} vanishes identically. We obtain a family of steady motions at the velocity ω_0 defined by taking $\lambda = 0$ in (5.1). The values of the integrals are:

$$h = \frac{1}{2} \left[(J^{-1}\mathbf{k}, \, \mathbf{k}) - (J^{-1}\mathbf{k}, \, \mathbf{\gamma})^2 (J^{-1}\mathbf{\gamma}, \, \mathbf{\gamma})^{-1} \right], \, f = 0$$
(5.3)

The first of these equalities determines the trajectories: a pair of curves L_h corresponding to the given h. The values corresponding to equilibrium, which is possible at any point because $V \equiv 0$, are:

$$h = 0, f = \frac{1}{2} \left[\mathbf{k}^2 - (\mathbf{k}, \mathbf{\gamma})^2 \right]$$
(5.4)

The sets $\{\mu_i = \text{const}\} \cap \{a_i=0\}$ consist of isolated points on the Poisson sphere, and since $(\omega, \gamma)=0$, there exist no steady motions other than those just described.

The bifurcation set Σ is shown in the figure. The segments Σ_i , i = 1, ..., 7, are described parametrically by Eqs.(5.2), with λ varying in the following intervals, respectively: $(-\infty, -J_1)$, $(-J_1, -u_0]$, $[-u_0, -J_2)$, $(-J_2, -v_0]$, $[-v_0, -J_3]$, $(-J_3, 0]$, $[0, +\infty)$; u_0, v_0 are the coordinates of the points $\pm e$. The segments Σ_g, Σ_g are defined by (5.3) and (5.4), respectively.

Let us determine the type of integral manifolds I_{hi} for the different domains $R^2 \setminus \Sigma$, considering near-critical values of h, f. Suppose that a point of Σ_6 is determined by a parameter value $\lambda = \alpha$. The corresponding critical integral surface contains a steady motion around the circle L_{α} , with the velocity vector ω_{α} a minimum point of the integral F on the sphere $\{\omega: H(\omega) = h\}$. The minimum value of the function Φ_{α} on L_{α} is $\min \Phi_{\alpha} = \alpha h + f$, and therefore all other points lie in the domain $\{\Phi_{\alpha} - \alpha h > f\} = C_1(\alpha)$ and by (3.2) $M_{hf} = L_{\alpha}$. If

f is decreased we obtain $C_1(\alpha) = M$, i.e., $M_{hf} = \emptyset$. For a slight increase of f, all $C_0(\lambda)$ are empty, all the non-empty $C_1(\lambda)$ constitute a pair of open discs, each of which

754

contains exactly one of the points $\pm e$ and does not cut L_{α} ; consequently, M_{hf} is an annulus about L_{α} . The set of

possible velocities over the interior points of M_{hf} is a pair of vectors near the minimum of F on the circle $\{H(\omega) = h\}$; over the boundary points it consists of a single vector - the minimum. Thus, for $(h, f) \in \Omega_1$ (see the figure) the integral manifold I_{hf} is a torus.

Similar arguments show that corresponding to a point on Σ_5 we have a steady motion which, on passing to Ω_2 , produces another torus. When we cross Σ_4 into Ω_1 , the two tori merge along the points of the steady motion to produce a single torus. Upon passage through Σ_3 and Σ_2 the evolution takes place in the opposite sense: the torus splits into two, one of which then contracts to an isolated trajectory of steady motion and disappears. The other

torus contracts to a steady trajectory over Σ_1 . If $(h, f) \in \Sigma_8$, then I_{hf} is a pair of steady

trajectories over the curves L_h . A slight increase in f produces a torus around each of these trajectories; passage through Σ_7 into Ω_1 combines the two tori into one. Thus, the integral manifolds corresponding to the points of $\Omega_{2,3,4}$, are pairs of tori. For points outside Ω_l , Σ_l

they are empty. The description of the DPMs M_{hf} for all values of h, f involves distinguishing a large number of different cases, depending on the values of k, J_i , and is thus extremely complicated.

We may conclude from the above analysis that small perturbations of the steady trajectories corresponding to points of Σ_i , i = 1, 2, 5, 6, 8, produces motions confined to tori in their neighbourhoods; hence these trajectories are stable with respect to some of the variables. Stable equilibria are obtained at the points $\pm e$ if f = 0; small perturbations produce DPMs which are small domains in the neighbourhoods of these points.

REFERENCES

- 1. SMALE S., Topology and mechanics. Invent. Math., 10, 4, 1970; 11, 1, 1970.
- LEVI-CIVITA T. and AMALDI U., Lezioni di Meccanica Razionale. Bologna, Nicolo Zanichelli, 1927.
- LYAPUNOV A.M., On constant screw motions of a rigid body in a fluid. In: Collected Works, 1, Izd. Akad. Nauk SSSR, Moscow, 1954.
- CHETAYEV N.G., Stability of Motion. Papers on Analytical Mechanics, Izd. Akad. Nauk SSSR, Moscow, 1962.
- 5. RUMYANTSEV V.V., On steady motions and their stability. Dokl. Akad. Nauk SSSR, 171, 4, 1966.
- 6. RUBANOVSKII V.N., On bifurcation and stability of steady motions of systems with known first integrals. In: Problems in the Investigation of the Stability and Stabilization of Motion, 1, Izd. Vychisl. Tsentre Akad. Nauk SSSR, Moscow, 1975.
- IRTEGOV V.D., Invariant Manifolds of Steady Motions and their Stability, Nauka, Novosibirsk, 1985.
- TATARINOV YA.V., On the study of the phase topology of compact configurations with symmetry. Vestnik Moskov. Gos. univ., Ser. Mat. Mekh., 5, 1973.
- KHARLAMOV M.P., Topological Analysis of Integrable Problems of Rigid Body Dynamics, Izd. Leningrad. Gos. Univ., Leningrad, 1988.
- 10. VESELOV A.P. and VESELOVA L.E., Flows on Lie groups with a non-holonomic constraint and integrable non-Hamiltonian systems. Funkts. Anal., 20, 4, 1986.
- VESELOVA L.E., New cases of integrability of the equations of motion of a rigid body in the presence of a non-holonomic constraint. In: Geometry, Differential Equations and Mechanics, Izd. Moskov. Gos. Univ., Moscow, 1986.

Translated by D.L.